

PII: S0040-4039(97)10203-9

Synthesis and Properties of anti, anti-8,17-Epithia-1,6;10,15-bismethano[18]annulene-7,18-dione and Its Dicationic Species

Shigeyasu Kuroda,* Mitsunori Oda,* Shin-ya Kuramoto, Atsushi Fukuta, Yoshihiro Mizukami, Yoshihiko Nozawa, Ryuta Miyatake, Mayumi Izawa, and Ichiro Shimao Department of Applied Chemistry, Faculty of Engineering, Toyama University, Gofuku 3190, Toyama 930, Japan

Abstract: The titled quinone compound has been synthesized, and the X-ray crystallographic analysis of this compound revealed that it has anti-anti-configuration for stereochemical relationship between two methylene and sulfur bridges. Its ¹H and ¹³C NMR spectra in D_2SO_4 indicate that the cationic species formed by protonation has localized positive charges on the carbony carbons, mainly due to the unfavorable p-orbital overlap. © 1997 Elsevier Science Ltd.

Although dependence of the dia- and paratropicity of the bridged annulenes upon the number of π electrons has been well documented, 1a-c) little is known of the configurational effect of bridged annulenes, ²) especially of heteroatom-bridged annulenes, on the tropicity. 3a-c) Recently, we reported the first synthesis of *anti*-6, 15epithia-8, 13-methano-benzo[d][14]annulene-7, 14-dione 1 and generation of its dicationic species. ⁴) In the study, however, we could not properly estimate the tropicity of its dicationic species; this difficulty may be attributed to the fact that the benzannelation substantially reduces the tropicity of the annulated π -electron system and it sometime interupts the peripheral conjugation. Therefore, we required an alternative ring system which has similar π -electron array without benzannelation to clarify the above question. Now we report here the stereoselective synthesis of *anti*, *anti*-8,17-epithia-1,6;10,15-bismethano[18]annulene-7,18-dione (4) and its sulfone derivative which have an isoelectronic structure to 1, and generation of their dicationic species.

Reaction of the bicyclic sulfide 2 with 1,6-diformyl-1,3,5-cycloheptatriene (3) in the presence of sodium methoxide in dry methanol at r. t. for 5 h⁵) gave 4 as fairly stable crystals in 20% yield, along with a small amount of the epoxide derivative 5 as pale yellow needles. The structures of 4 and 5 were confirmed by their spectral data and elemental analyses. The ¹H and ¹³C NMR spectra of 4 showed a structure with planar symmetry which includes the sulfur atom and two methylene carbons, and the assignment of all protons was made by the ¹H-¹H and ¹H-¹³C COSY spectra.⁹) The two bridged methylene protons resonated at $\delta_{3.57}$ and 2.19 for the C₁₉ position, and $\delta_{2.78}$ and 1.97 for the C₂₀ position with geminal coupling constants of 14.7 and

Scheme 2

11.9 Hz, respectively, clearly indicating that both cycloheptetriene parts have the open form rather than the norcaradiene form. The difference between the two coupling constant values suggests that the through-space distance between C_1 and C_6 is longer than that of C_{10} and C_{15} . The latter phenomenon might be derived from the electronic repulsion of two carbonyl groups. The ring protons of 4 appear at slightly higher field than those of 1.4) The ¹³C NMR spectra showed 11 peaks and the signals for all carbons are observed at lower field than those of 1 except one for the carbonyl carbons which resonated at δ 194, being a little higher than that of 1 (δ 197).⁴) Configuration between three bridges in 4 was deduced by the ¹H chemical shifts of the inner protons on the methylene carbons observed at higher fields compared with those of 1-thia-4,9-methano[11]annulene.6) Furthermore, the spectral data of 7, prepared by the oxidation of 4 with 2.2 equiv. of MCPBA in 67% yield along with the epoxide $\mathbf{8}$, supported this *anti*, *anti*-configuration, judging from the slight differences in the ¹H chemical shifts of the methylene protons between the sulfide 4 and sulfone 7, since a large difference is expected in the case of syn-configuration. Definitive confirmation was made by the X-ray crystallographical analysis, and a perspective view of the molecular structure of 4 is shown in Figure 2.10 It is seen that the configuration between three bridges is an anti-anti-one and through-space carbon-carbon distances of the bridging parts are 2.466 Å (C10-C15), 2.522 Å (C1-C6), and 2.943 Å (C8-C17) long shown as average values, which are in good agreement with the above ¹H NMR spectral elucidation. The stereoselective formation of products with anti, anti-configuration might be due to the larger atomic radius of the sulfur atom which prevents the approaching electrophilic substrate 3 from arranging the transition state with syn-syn type of configuration contrary to the case of the similar oxygen bridged annuleno-annulene.^{3a)} The ¹H NMR spectra of 4 and 7 in

 D_2SO_4 showed signals of ring protons at lower field by about 0.6-1.5 ppm compared to those of the corresponding protons in CDCl₃, indicating formation of the dicationic species 6 and 9 by protonation.⁴) The chemical shifts of the methylene protons of dications 6 and 9 were also observed at lower field by 1.5 and 1.8 ppm compared to those in CDCl₃, respectively. All ¹³C chemical shifts of 6 and 9 observed at lower fields also support the formation of the dicationic species and those of the carbonyl carbons similar to those of 1.⁷) However, these spectral data showed that the distribution of positive charges in 6 and 9 is far less than those in the mono- and dicationic species of *syn*, *syn*-1, 6:8, 17:10, 15- trismethano[18]annulene.⁸) Therefore, the structure of the dicationic species formed can be best regarded a resonance structure depicted in the forms of 6a and 9a. The main reason for this charge localization can be attributed to its stereochemistry; that is, in the crystal structure of 4 the peripheral conjugation is prevented by the unfavorable overlap of the p-orbitals through the zigzagged C₆-C₇-C₈-C₉-C₁₀-C₁₁-C₁₂ chain due to the large torsion angles between them [especially that of C₉-C₁₀-C₁₁-C₁₂ is 65.6° (av.)]. In the meantime, the dicationic species 6a changed under the conditions of NMR measurament with a halflife time $\tau_{1/2}$ =ca. 10 min at 36 °C, increasing new signals, the assignment of which had remained unclear.

Fig. 2 The X-ray structure of 4.

An attempt at thermal desulfurization of 4 to obtain a new annuleno-annulenedione 10 was unsuccessful; it did not show any change under its melting point⁴) and it decomposed above that point without formation of any identifiable product. The fact of the relatively longer distance between C₈ and C₁₇ observed in the X-ray structure accounts for the resistance against thermal desulfurization. The cyclicvoltammograms of 4 in dimethyl sulfoxide (DMSO) showed two reversible half-wave reduction potentials (${}^{1}E_{1/2}$ = -0.97V, ${}^{2}E_{1/2}$ = -1.36V) which are more negative than those of 1 (${}^{1}E_{1/2}$ = -0.81V, ${}^{2}E_{1/2}$ =-1.17V). The reason for the instability of the dianionic species genarated from 4 compared to the case of 1 can be due to the less favorable p-orbital overlap mainly derived from the doubled *anti*-configuration.

Acknowledgement. We thank Nihondenshi (JEOL) Co., Ltd., for the measurement of NMR spectra of 4 and 5 and also Mac Science Co., Ltd., for the X-ray analysis of 4. Financial support by a Grant-in Aid Scientific Research (No. 08640677) from the Ministry of Education, Science, Sports and Culture, Japan and Yoshida Educational Foundation (1995) by YKK Co., Ltd., is gratefully acknowledged

References

1a) Vogel, E., and Roth, H. D., Angew. Chem., 1964, 76, 145; 1b) Vogel, E., Böll, W. A., Angew.

Chem., 1964, 76, 784; 1c) Blattmann, H, -R., Böll, W. A., Heilbronner, E., Hohlneicher, G., Vogel, E., and Weber, J. -P., Helv. Chim. Acta, 1966, 49, 2017.

- 2) Vogel, E., Harberland, U., and Günther, H., Angew. Chem., 1970, 82, 510.
- 3a) Vogel, E., Biskup, M., Vogel, A., and , and Günther, H., Angew. Chem., 1966, 78, 755; 3b) Maddox,
 M. L., Martin, J. C., and Muchowsky, J. M., Tetrahedron Lett., 1980, 21, 7; 3c) Vogel, E., Kuebart,
 F., Marco, J. A., Andree, R., Günther, H., and Aydin, R., J. Am. Chem. Soc., 1983, 105, 6982.
- Kuroda, S., Oda, M., Kuramoto, S., Mizukami, Y., and Shimao, I., *Tetrahedron Lett.*, 1994, 35, 7405.
- 5) Miyahara, Y., Inazu, T., and Yoshino, T., J. Org. Chem., 1984, 49, 1177.
- 6) Vogel, E., Feldmann, R., Duwell, H., Cremer, H.-D., and Günther, H., Angew. Chem., Intern. Ed. Engl., 1964, 11, 217.
- 7) Addition of a large excess of water to this solution soon after the formation of the dicationic species resulted in recovery of the starting materials 4 and 7 quantitatively.
- Deger, H. M., Müllen, K., Angew. Chem., 1978, 90, 900. (King, L. C., and Ostrum, G., J. Org. Chem., 1964, 29, 3459).
- 9) Physical properties of 4 and 7.
- 4: Yellow needles, mp 268-271°C; IR (KBr) 3020w, 3000w, 1655vs (C=O), 1600s, 1565s, 1430s, 743s, 1270m, 1190s, 855m, 830m, 740s, 720s cm⁻¹; ¹H NMR (CDCl₃) δ 8.15 (s, 2H, H-9, 16), 7.07 (m, 2H, H-2, 5), 6.90 (m, 2H, H-3, 4), 6.82 (m, 2H, H-12, 13), 6.32 (m, 2H, H-11, 14), 3.57 (d, *J*=14.0Hz, 1H,H-19b), 2.78 (d, *J*=11.9Hz, 1H,H-20a), 1.97 (d, *J*=11.9Hz, 1H, H-20b), 1.68 (d, *J*=14.0Hz, 1H, H-19a).: (D₂SO₄) δ 9.23 (s, 2H, H-9, 16), 7.70 (m, 2H, H-2, 5), 7.39 (m, 2H, H-3, 4), 7.18 (m, 2H, H-12, 13), 6.82 (m, 2H, H-11, 14), 4.49 (d, *J*= Hz, 1H,H-19b), 3.44 (d, *J*= Hz, 1H,H-20a), 3.27 (d, *J*= Hz, 1H, H-20b), 2.29 (d, *J*= Hz, 1H, H-19a).; ¹³C NMR (CDCl₃) δ 194.1 (C=O), 150.9, 138.5, 133.6, 133.2, 129.7, 129.4, 128.5, 123.0, 43.8, 31.5; (D₂SO₄) δ 208.8 (C=O), 171.4, 144.9, 141.8, 138.8, 132.6, 132.1, 131.7, 128.6, 47.1, 36.1.;UV-vis (CH₂Cl₂) λ_{max} 236.6 (logε=4.50), 255.6 (4.48), 364sh nm (2.66); MS m/z 318 (M⁺, 100%), 257 (14%); HRMS M. Found: 318.0714. Calcd for C₂₀H₁₄O₂S: 318.0714.; CV (in Volts vs.SCE) ¹E_{1/2}= -0.97V, ²E_{1/2}= -1.36V (in DMSO).
- Yellow needles, mp>300°C; IR (KBr) 3020w, 2960w, 1665vs (C=O), 1583s, 1509m, 1439m, 1342m, 1272m, 1194m, 1063m, 742m cm⁻¹; ¹H NMR (CDCl₃) δ 7.94 (s, 2H, H-9, 16), 7.21 (m, 2H, H-2, 5), 6.99 (m, 2H, H-3, 4) 6.88 (m, 2H, H-12, 13), 6.50 (m, 2H, H-11, 14), 4.02 (dt, J=1.70 & 14.4 Hz, 1H, H-19b), 2.58 (d, J=12.4Hz, 1H, H-20c), 2.15 (dt, J= 1.70 & 14.4Hz, 1H, H-19a), 1.85 (d, J=12.4 Hz, 1H, H-20d).: (D₂SO₄) δ 9.13 (s, 2H, H-9, 16), 7.73 (m, 2H, H-2, 5), 7.62 (m, 2H, H-3, 4), 7.41 (m, 2H, H-12, 13), 7.22 (m, 2H, H-11, 14), 4.04 (d, J= Hz, 1H, H-19b), 3.59 (d, J= Hz, 1H, H-20a), 3.05 (d, J=1 Hz, 1H, H-20b), 2.64 (d, J= Hz, 1H, H-19a). ¹³C NMR (CDCl₃) δ189.7 (C=O), 152.2, 143.1, 133.7, 132.2, 130.3, 130.0, 124.7, 121.6, 40.8, 30.7; MS m/z 350 (M⁺, 1%), 334 (100%); HRMS M. Found: 350.0623. Calcd for C₂₀H₁₄O₄S: 350.0612.
- 10) The X-ray crystal analysis established the exact structure of the dione 4. The crystal containing hexane $[(C_{20}H_{14}O_2S)_{2n} \cdot (C_6H_{14})_n]$ has monoclinic space group P21/a with a=22.478(4) Å, b=6.488(4) Å, c=25.768(4) Å, and β =104.74(6)°, V=3634.16(6) Å, z=8, Dx=1.150 Mgm⁻³, Dm=1.162 Mgm⁻³. Intensity data were collected on a four-circle differactometer with graphite monochromated Mo/K- α radiation. Structure was refined to an R value of 0.0652.

(Received in Japan 8 August 1997; revised 16 September 1997; accepted 17 September 1997)